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Abstract
The results of measurements of the thermal conductivity of REIn3 (RE = Pr,
Nd, Dy, Ho, Tm) compounds as a function of the temperature in the interval
4–300 K in the absence and in the presence of an external magnetic field of 8 T
are presented. Except for PRIn3 all the compounds are antiferromagnetic. YIn3

was also measured as a reference compound. The results were analysed in the
paramagnetic phase, where an influence of the crystalline electric field on the
thermal conductivity was found. Drastic changes in the thermal conductivity
were observed and analysed in the vicinity of the Néel temperature and in the
antiferromagnetic phases of the compounds. Below the Néel temperature an
additional magnon contribution to the thermal conductivity was separated out.

1. Introduction

The thermal conductivity of elemental rare earth (RE) metals and rare earth intermetallic
compounds has been examined for many years [1–3]. Nevertheless, there is lack of systematic
investigations into the thermal conductivity of high-purity monocrystalline samples of a simple
crystalline structure for which the magnetic and electronic properties are well known. Our
previous investigations [3] were devoted to the cubic intermetallics REIn3 with RE = Tb,
Dy, Tm and Lu. The measurements were made in the absence of an external magnetic
field and at temperatures in the interval 4–80 K. Therefore, it seemed interesting to widen
these investigations: (i) by examining other compounds of the same crystal structure, (ii) by
broadening the temperature interval and (iii) by studying the influence of an external magnetic
field. Thus, in the present paper we investigate REIn3 (RE = Pr, Nd, Dy, Ho, Tm) at
temperatures up to 300 K as well as some of them at low temperatures but in the presence
of an external magnetic field of strength 8 T.

Rare earth materials can find applications in certain electronic devices and knowledge of
how their thermal conductivity is influenced by the temperature and the external magnetic field
seems necessary. By examining monocrystalline samples we are able to get information on their
transport properties which are free of the influence of the crystal grain structure. We believe
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that by gaining basic knowledge about thermal transport phenomena and by understanding their
mechanisms one should be able to produce materials with the required thermal properties.

All the mentioned compounds REIn3 crystallize in the face-centred cubic (fcc) structure
of the type AuCu3. They order antiferromagnetically at low temperatures. Their Néel
temperatures, TN, are low and do not exceed 20 K. The highest one is that of DyIn3 (TN =
19.35 K). The scattering in these materials, which is responsible for their electrical and
thermal resistivity, is—besides the impurity potential and phonon scattering of the conduction
(s-)electrons—isotropic s–f and aspherical (multipole) Coulomb scattering. The interactions
responsible for this scattering contribute to the magnetic part of the electrical and thermal
resistivity of the materials in question provided this part can be extracted from the total
measured resistivity using the Mathiessen rule. The scattering is under the influence of the
crystalline electric (CF) field, which splits the (2J +1) degenerate ground state multiplet of the
4f-shell of the rare earth ions and allows the conduction electrons to gain or to lose an amount
of energy equal to the energy of the splitting in the course of scattering in the paramagnetic
phase (and that of a CF excitation and/or a spin wave excitation in the ordered phase). The
CF parameters and the energies of CF excitations, the magnetic structure and properties, the
electronic structure as well as the electrical resistivity and the thermoelectric power of the
compounds which we examine in the present paper have already been examined. In particular
we know: (i) the crystal field level schemes and energies from neutron scattering [4–6], the
Schottky specific heat anomaly and the temperature dependence of the magnetic susceptibility
as well as the magnetization isotherms; (ii) the magnetic structures (from the simplest collinear
structure in the case of HoIn3 to the most complicated incommensurate one in the case of NdIn3;
(iii) the electronic structures, the Fermi surface (FS) geometries, the density of states and the
cyclotron masses of the conduction electrons at extreme cross-sections of FS, which allow one
to estimate the electron–phonon and electron–magnon strength (see the review [7] and papers
quoted therein). There are also introductory theoretical considerations on the influence of the
crystal field on thermal conductivity [8].

Single crystals were grown by slow cooling of the melt with a stoichiometry of 90 at.% In
and 10 at.% RE. The purity of the components was 99.999% and 99.99% for In and RE metals,
respectively. The cooling rate was gradually increased from 0.5 K h−1 at the beginning of the
growing process to 4 K h−1 at the end. Rectangular single crystals with edges oriented along
fourfold axes with an accuracy better than ±2 ◦ were used for measurements.

The thermal conductivity was measured using the stationary heat flux method in the
temperature range 4–300 K. The experimental set-up and the measurement procedure have
been described in detail in [9, 10]. The temperature gradient along the sample was in the range
0.1–0.5 K. Particular care was taken to avoid parasitic heat transfer between the sample and its
environment. The measurement error was below 2% and the surplus error estimated from the
scatter in the measurement points did not exceed 0.3%.

The measurements of the thermal conductivity in the external magnetic field and in its
absence were made in a cryostat constructed for the cooperation with PPMS [11]. The external
magnetic field was parallel to the temperature gradient.

The results of the measurements of the electrical resistivity of the REX3 single crystals can
be found in [12, 13]. In the present paper the Wiedemann–Franz (WF) law is used for estimating
that part of the total thermal conductivity which is carried by the conduction electrons. This
means that the electronic thermal conductivity as a function of temperature is calculated by
using the formula λe(T ) = (L0 × T )/ρ(T ), where L0 = 2.45 × 10−8 W � K−2 and ρ(T )

denotes the temperature dependence of the electrical resistivity. The obtained values of λe(T )

indicate that heat transport in these compounds is mainly electronic. The contribution of other
heat carriers is only a few per cent. The values of the electronic thermal conductivity obtained
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in this way are valid only when the relaxation time of the thermal transport and that of the
electrical transport are the same, i.e. when the scattering can be assumed to be elastic. This
occurs only at sufficiently low temperatures, when the conduction electrons are scattered on
impurities and physical defects or at high temperatures exceeding the Debye (θD) temperature
T/θD � 1. At intermediate temperatures the discrepancies can be considerable and lead to
erroneous estimations of the contribution of the conduction electrons to heat transport. In order
to explain the latter statements we write the expression for the total thermal resistivity

1/λe = We = Wep + Wei = 3

Ce(T )v2
F

[τ−1
ep(λ)(T ) + τ−1

ei ], (1)

ρ = ρep + ρei = m

nee2
[τ−1

ep(σ )(T ) + τ−1
ei ] (2)

where the indices ei denote the temperature-independent electron–impurity (defect) scattering
and ep(λ) and ep(σ ) stand for the electron–phonon scattering in the case of the thermal and
electrical currents, respectively. We use the standard notation σ for the electron conductivity
and assume that the electron–impurity (defect) scattering is the same for both the currents.
Ce, vF denote the electronic specific heat and the electron velocity at FS. The electron
mass, charge and density are denoted respectively by m, e, ne. When writing the above
expressions (1) one assumes the validity of the Mathiessen rule for the scattering of both
the electrical and heat currents, the Klemens laws for the thermal resistivity components and
the Drude formulae for the electrical resistivity components. The relaxation times of (1)
are dependent on the temperature and the respective dependences follow τ−1

ep(λ)(T ) ∝ T 3 for

T � θD, τ−1
ep(λ)(T ) ∝ T —for T � θD, τ−1

ep(σ )(T ) ∝ T 5 for T � θD and τ−1
ep(σ )(T ) ∝ T for

T � θD [14, 15]. It is seen that at a temperature equal to approximately θD the temperature
dependences of the relaxation time describing the electrical and thermal transport are the
same and that they differ considerably at low temperatures. By comparing the change in the
conduction electrons during the scattering to the Fermi energy for a given scattering source
one can classify the scattering process as inelastic, elastic or quasielastic. An analysis of the
temperature dependence of the Lorenz number L(T ) can also used for such a classification [2].

There are other types of electron scattering, which are not included in (1) which are
in general inelastic. For the compounds being considered it is, first of all, the magnetic
s–f scattering between the conduction electron spin and the spin of the f-shell of the
rare earth ions which is influenced by the magnetic order (electron–magnon scattering in
their antiferromagnetic state) and the crystal field (see, e.g., the review [16]). There is
also the possible influence of quadrupolar (or multipolar) Coulomb (aspherical) potential
scattering [16]. The heat current carried by magnons requires separate consideration [2].

2. Results and discussion

Figure 1(a) shows the temperature dependence of the thermal conductivity, λ(T ), for six
samples of REIn3 on a semilogarithmic scale. At low temperatures, T � 0.1θD, the magnitude
of the thermal conductivity of TmIn3 is about 1.5 W K−1 m−1 while it is as high as about
70 W K−1 m−1 for YIn3 (a Pauli paramagnet) which serves as a reference for estimating the
background phonon scattering. At temperatures of the order of the Debye temperature, T ≈ θD,
the lowest values of λ(T ) are about 20 W K−1 m−1 for TmIn3 and NdIn3 and the highest
one, about 100 W K−1 m−1, is for YIn3. At intermediate temperatures there is a distinct
maximum of the thermal conductivity for NdIn3, PrIn3 and YIn3. In figure 1(b) we present
the experimental data for the electrical resistivity, ρ(T ), of the examined compounds. The
values of the resistivity are in the interval 0.3–8 µ� cm for all the samples except for NdIn3.
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Figure 1. (a) The temperature dependence of the thermal conductivity of REIn3 and the reference
compound YIn3.

As we mentioned, the measurements of the electrical resistivity were made in order to estimate
the electronic thermal conductivity.

2.1. The contribution of spin disorder to the thermal conductivity

In order to extract the spin-disorder thermal resistivity, i.e. the part of the thermal resistivity
following from the s–f scattering in the paramagnetic phase, from the total measured thermal
resistivity we shall use the method proposed by Bauer et al [17]. For this purpose we first write
down the expression for the thermal resistivity of the background non-magnetic metal (upper
index NM, YIn3 in our case), which is [17]

1/λNM = W NM
e = W NM

e,i + W NM
e,p . (3)

W NM
e,i and W NM

e,p can be easily identified with terms of (1). An additional term following from
the magnetic scattering We,mag contributes to the thermal resistivity of REX3 compounds with
an incomplete 4f-shell of R-ions (upper index M)

1/λM = W M
e = W M

e,i + W M
e,p + We,mag, (4)



Thermal conductivity of REIn3 compounds 1431

where the lower indices have the same meaning as in (1). Consider now the difference

�W = W M
e − W NM

e = (W M
e,i − W NM

e,i ) + (W M
e,p − W NM

e,p ) + We,mag (5)

and note that for different samples, which we discuss, the difference in the first bracket does
not vanish but we can assume in the first approximation that the value in the second bracket is
equal to zero for samples of the same structure. Therefore, we have

�W = (W M
e,i − W NM

e,i ) + We,mag. (6)

The relaxation time for the impurity scattering is independent of the temperature and the
electronic specific heat at sufficiently low temperatures is linear in T (compare (1)). Thus,
we can write down

�W = (AM − ANM)/T + We,mag. (7)

The constants in (7) are A = ρei/L0 with appropriate upper indices, so their values are to be
determined from the magnitudes of the residual resistivity of the non-magnetic (YIn3) sample
and the magnetic RIn3 sample, respectively. The Néel temperatures TN of the crystals under
considerations are very low; thus we can assume the validity of the above equation in the
paramagnetic phase of our crystals. When one assumes, furthermore, that the magnetic part
of the electrical resistivity arises from the s–f scattering, then in the paramagnetic phase at
temperatures higher than the total crystal field splitting the resistivity should be proportional to
the de Gennes factor (g − 1)J (J + 1) and then We,mag = C(g − 1)J (J + 1)/T , where C is a
constant. Thus, after [17], we can write:

�W = (AM − ANM)/T + C(g − 1)2 J (J + 1)/T . (8)

The above equation indicates that the experimental relation between the values of �W and
1/T should be linear in 1/T for our compounds above TN provided that it is the magnetic s–f
scattering which is responsible for the additional thermal resistivity and that the influence of
the crystal field on the scattering can be neglected. The dependence �W on T −1 for REIn3

(RE = TmIn3, PrIn3, NdIn3, HoIn3, DyIn3) following from results of our measurements in the
paramagnetic phase is shown in figure 2. The values of �W were computed as the difference,
1/λM − 1/λNM, between the thermal resistivity of a given RE compound and that of YIn3.
The highest values of �W are seen for TmIn3 and NdIn3. Equation (8) describes well these
experimental data in the temperature intervals 300–180 K for TmIn3 and 300–75 K for NdIn3.
The magnitudes of �W are considerably lower for the remaining three compounds, namely
PrIn3, HoIn3 and DyIn3. As in [17], we attribute the departure from the linear dependence (8)
at lower temperatures to an influence of the crystal field which for the compounds under
consideration is examined, for example in [18–20]. Notice, however, that other magnetic
scattering than the assumed s–f one in (8) can also yield a departure from the linear dependence.
As seen from figure 3, L/L0 does not exceed 1 in the whole examined temperature interval,
which means that the magnetic scattering is inelastic.

2.2. Investigations of thermal conductivity at low temperatures (the vicinity of TN > T ∼= TN)
in the presence and absence of an external magnetic field

Of the examined compounds only PrIn3 does not manifest a magnetic order down to the lowest
temperatures. The antiferromagnetic state in TmIn3, NdIn3, HoIn3 and DyIn3 forms below
TN, being respectively equal to 1.4, 5.9, 7.9 and 19.3 K. The formation of a magnetic order
below TN leads to lowering of the thermal resistivity [3] and a change in the temperature
dependence λ(T ) due to less intensive scattering. The fact that magnons become heat carriers
below TN is the second factor which causes lowering of the thermal resistivity. Figure 4(a) is a
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Figure 2. The difference �W = 1/λM − 1/λNM versus 1/T . λM is the thermal conductivity of
REIn3 and λNM that of the reference compound YIn3. The corresponding values of the temperature
are marked below those of 1/T .

double logarithmic plot of the temperature dependence of the thermal conductivity of DyIn3

in the absence of an external magnetic field and in the presence of a field of the strength
8 T. The change in the behaviour of λ(T )H=0T is seen at a temperature of 17 K, i.e. at a
temperature 2 K lower than TN determined from the analysis of the magnetic susceptibility.
The illustrated change is characteristic for magnetic phase transitions in ferromagnets and
antiferromagnets [1–3]. Above TN, in the temperature interval 50 K > T > TN, the thermal
conductivity λ(T )H=0T increases as T 0.6 and below TN its decrease is governed by the law
T −0.39. In the external magnetic field of strength 8 T, the thermal conductivity coefficient of
DyIn3 is lower than in the field-free case in the vicinity of TN. The external magnetic field
lowers (by about 1.8 W K−1 m−1) the magnitude of the thermal conductivity considerably and
shifts the minimum about 0.8 K in the direction of lower temperatures. The power laws which
govern the temperature dependence in the presence of a magnetic field are T 0.75 above TN and
T −0.43 below TN.

Figure 4(b) (double logarithmic scale) illustrates the dependence of the Lorenz function
L = λρ/T on the temperature. The values of L have been calculated by using the measured
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Figure 3. The log–log plot of the Lorenz number L/L0 (in units of L0 = 2.45 × 10−8 W � K−2)
as a function of the temperature for: 1, DyIn3; 2, HoIn3; 3, NdIn3; 4, PrIn3; 5, TmIn3.

magnitudes of the total thermal conductivity (λ) and of the total electrical resistivity (ρ) and
are represented in units of the Sommerfeld value L0 of this quantity. It is seen that the
values of this function are the same in the vicinity of the transition and below TN for both
the presence and the absence of the field. Differences occur above 30 K. The values of
L/L0 < 1 manifest an inelastic scattering contribution to the thermal conductivity; one can
expect a contribution to the scattering of the conduction electrons from phonons, magnons and
crystal-field excitons [2, 21]. Figure 5(a) shows a double logarithmic plot of the temperature
dependence of the thermal conductivity for NdIn3 (TN ≈ 6 K). Unlike DyIn3, for this compound
the minimum of λ(T )H=0T is at the temperature of the para–antiferromagnetic phase transition
determined from the analysis of the magnetic susceptibility. The power laws which govern this
temperature dependence are T 0.51 above TN and T −0.58 below TN . The external magnetic field
lowers the minimum by about 0.9 W K−1 m−1 and shifts it about 0.4 K in the direction of lower
temperatures. It is seen from figure 5(b) that the values L/L0 for NdIn3 are also below 1. The
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Figure 4. The thermal conductivity (a) and the Lorenz number (b) of DyIn3 as a function of the
temperature in the vicinity of TN. The interpolation by Chebyshev polynomials in (a) is marked by
the dashed lines.

influence of the magnetic field (λ(T )H=0T > λ(T )H=8T) on the temperature dependence of
L/L0 is seen at all temperatures except in the close vicinity of the transition temperature.

Similar graphical representations of the thermal conductivity as in the two previous cases
are shown in figures 6(a), (b) for HoIn3. The behaviour of the dependences λ(T )H=0T and
λ(T )H=8T in this case are different, as in DyIn3 and NdIn3. Namely, there are maxima
of λ(T )H=0T at about 6.5 K and λ(T )H=8T at about 6.1 K as can be seen in figure 6(a).
The difference between the temperature at which the minimum and the maximum occurs
is about 1.5 K both in the absence and presence of the magnetic field. The maximum is
lowered by the magnetic field about 0.5 K. For HoIn3 the power laws which describe the
behaviour of λ(T )H=0T and λ(T )H=8T are also indicated in figure 6(a); just below TN these
are T −1.37 and T −1.19, respectively. This means that the decrease is more rapid, as in DyIn3

and NdIn3. The increase above TN is also steeper since it is governed by T 1.05 and T 0.86,
respectively. Figure 6(b) is a double logarithmic plot of the dependence of L/L0 on the
temperature for HoIn3. A change in this dependence under the influence of the magnetic
field is seen not only above the transition temperature but also below it and in its vicinity.
The character of the dependences shown is similar to those observed in metals with physical
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Figure 5. The thermal conductivity (a) and the Lorenz number (b) of NdIn3 as a function of the
temperature in the vicinity of TN. The interpolation by Chebyshev polynomials in (a) is marked by
the dashed lines.

defects and chemical impurities [21]. In metals with such defects and impurities the minimum
of L/L0 results in general from competition between the inelastic electron–phonon scattering
and elastic electron-defect and electron-impurity scattering. In rare earth metals the effect
can be enhanced by magnetic scattering, which we have briefly described, and perhaps even
by the presence of antiferromagnetic domains. The magnetothermal conductivity, defined as
{[λ(T )H=0T − λ(T )H=8T]/λ(T )H=0T}, is presented in a double logarithmic plot in figure 7
as a function of the temperature in the vicinity of the transition temperature. The greatest
influence of the magnetic field on the thermal conductivity is seen in the case of HoIn3 and the
weakest temperature dependence of this quantity is for DyIn3. For NdIn3 the lowest values of
the magnetothermal conductivity are about 8 K.

A further analysis of our experimental data can be made by introducing the notion
of magnon thermal conductivity. As we mentioned in the previous section, the magnetic
excitations in the antiferromagnetic phase simultaneously transport and dissipate heat. The
total effect of the influence of the magnons on the thermal conductivity can be shown by
subtracting the thermal conductivity measured in the absence of the magnetic field and in the
presence of a field high enough to destroy the antiferromagnetic ordering (Hmax > k0T/µγ ;
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Figure 6. The thermal conductivity (a) and the Lorenz number (b) of HoIn3 as a function of the
temperature in the vicinity of TN. The interpolation by Chebyshev polynomials in (a) is marked by
the dashed lines.

k0 is Boltzmann’s constant and µ and γ the Bohr magneton and gyromagnetic constant,
respectively). Separation of the magnon component can also be done by subtracting the thermal
conductivity of an isomorphous non-magnetic compound or by extrapolation of the thermal
conductivity of the paramagnetic state to the ordered one [22, 23].

In order to estimate the magnon thermal conductivity we used the extrapolation method.
We applied it to the thermal conductivity in the presence of a magnetic field and in the field-free
case and represent the results in figure 8. A rapid increase in the magnon thermal conductivity
with lowering of the temperature is observed just below the Néel temperature for all samples.
When the number of magnons is decreased with further lowering of the temperature the
scattering of the magnons by defects and impurities is enhanced. Also the number of magnons
acting as scattering sources for the conduction electrons is reduced. As a consequence a
weaker temperature dependence of the magnon thermal conductivity is observed. In HoIn3

the scattering of magnons by impurities overwhelms the effects of their increase in number,
and therefore a maximum in the magnon thermal conductivity is seen.
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λ(T )H=8T]/λ(T )H=0T}.

3. Summary

In the paper we present first results of the measurements of the thermal conductivity of REIn3

compounds (RE = Pr, Nd, Dy, Ho, Tm) in the temperature interval 4–300 K in the absence of
an external magnetic field. Thorough examination of the dependences found was made in the
paramagnetic phase (T > TN) and in the vicinity of and below their Néel temperatures TN. In
the latter case an external magnetic field of strength 8 T was applied in the direction parallel
to the temperature gradient. In the paramagnetic phase we found the influence of the crystal
field on the conduction electron scattering and the resultant conductivity; a rapid increase in the
thermal conductivity is observed in the vicinity of the temperature in this phase. Below the Néel
temperature an additional magnon contribution to the thermal conductivity was separated out.
A separation of other apparent contributions seems impossible because of a lack of theoretical
models describing the phenomena. The obtained results indicate that the magnetic field lowers
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Figure 8. The magnon thermal conductivity of DyIn3, HoIn3 and NdIn3 as a function of the
temperature.

the Néel temperature (the minimum at the curve λ(T )H=8T). It also considerably lowers the
thermal conductivity (from several to about 20%; see figure 7). Examination of the Lorenz
function showed that the conduction electron scattering is inelastic in the whole examined
temperature interval in both the absence and the presence of an external magnetic field, though
for HoIn3 and NdIn3 the external field has an influence on the values of L(T )/L0. Finally the
magnon heat transport was determined in the presence of an external field and in its absence
and was analysed as a function of the temperature.
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